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A layer of liquid can be supported on the inside or outside of a horizontal rotating 
cylinder if the viscous forces pulling the liquid around with the cylinder are large 
enough to overcome the force of gravity. If there are places on the cylinder where the 
thickness of the layer is larger than a critical value, the excess fluid will run off. For 
a given maximum thickness the critical condition may be expressed as the minimum 
speed at which the given layer can be maintained. An approximation of the critical 
condition using lubrication theory was given by Wallis (1969) and by Deiber & Cerro 
(1976) for rimming flow and by Moffatt (1977) for coating and rimming flow. Here we 
address the question of the axial variations of the free surface on the coating layers, 
and show that they are dominated by the same type of balance between capillarity 
and centripetal acceleration which determines the shape of rotating drops and 
bubbles in the absence of gravity. The main results of this paper are the experiments 
which establish the validity of approximations used to describe the underlying fluid 
mechanics involved in rimming and coating flows. 

1. Introduction 
The aim of this paper is to describe in mathematical terms the steady flow of 

liquids which coat the outside or inside of rotating cylinders when gravity is not 
negligible. In the paper we draw together the work of Joseph & Preziosi (1987) on the 
axisymmetric interface shapes which arise under zero gravity when the liquid films 
rotate rigidly, and the work of Moffatt (1977), in which a lubrication analysis is used 
to express the effects of gravity in a two-dimensional flow in which axial variations 
of the interfaces are neglected. 

One of the interesting achievements of the analysis of Moffatt is the derivation of 
a load condition approximating an answer to the following question. ‘It is a matter 
of common experience if a knife is dipped in honey and then held horizontally the 
honey will drain off: but the honey may be retained on the knife by simply rotating 
it about its length. The question arises : What is the maximum load of honey that can 
be supported per unit length of knife for a given rotation rate 1 ’ 

One of the main achievements of this paper is the verification of the maximum load 
condition from the lubrication analysis and the experimental comparisons, which 
establish that the approximations of the lubrication analysis are appropriate in a 
certain explicitly stated range of parameters. It is of some interest that our load 
condition is expressed as limiting value of the coating thickness. The films which coat 
cylinders are never two-dimensional and the axial variations which are observed are 
not weak. Hence the maximum thickness varies from point to point along the axis. 
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Run-off occurs locally, near points, in planes, where the maximum thickness has 
exceeded the critical thickness. 

The aforementioned considerations oblige us to consider an extension of Moffatt’s 
analysis in which the free surface r = R(B, x) and the velocity V = V ( r ,  0, x) depend 
on the axial coordinate x. This we accomplish in a zeroth-order approximation in 94 
by requiring that profile shape in a vertical plane where the effects of gravity are 
weakest should minimize the interfacial potential introduced by Joseph et al. 
(1985). 

A two-dimensional analysis of rimming flow as a regular perturbation of rigid 
motion V = e, Qr with a small gravity parameter g/Q2a has been given by Ruschak 
& Scriven (1976). They did a domain perturbation and solved the linear partial 
differential equations which arise a t  leading order in the concentric annular domain 
of the unperturbed problem. Choosing D as the thickness of the liquid-layer a t  zero 
gravity, they describe their results in terms of Reynolds number R, = Q D 2 / v  and a 
dimensionless thickness h = D/a. In  every case the maximum film thickness occurs 
in the upper quadrant 0 < 0 < in on the rising side of the cylinder and the minimum 
thickness is diametrically opposite. For small values of R,, the maximum thickness 
lies in a horizontal plane through the centre 0 = 0. The gravity-induced secondary 
motion vanishes a t  high rates of rotation and for thin films h + 0. 

A fully nonlinear finite element analysis of the two-dimensional rimming-flow 
problem was given by Orr & Scriven (1978). They found remarkable agreement 
between the solution of the linear and nonlinear problems even when the gravity 
parameter g/Q2a was not small. At higher Reynolds number, however, the agreement 
is less good especially when the surface tension is also large. 

An analysis of rimming flow of viscoelastic fluids was given by Sanders, Joseph & 
Beavers (1981). They did a domain perturbation like Ruschak & Scriven and showed 
how the position of the maximum thickness varies with the complex viscosity. They 
gave experimental results and showed how the storage and loss modulus could be 
backed out of the experimental results. 

The essentials of the lubrication analysis used to derive the condition for run-off 
was given by Van Rossum (1958). He studied the case in which the liquid is lifted by 
means of a vertical plate emerging from the liquid. A lubrication analysis leading to 
run-off was presented as a homework problem (6.13 on p. 157) by Wallis (1969). It 
was also applied to rimming flow by Deiber & Cerro (1976). 

All of the aforementioned authors restrict their attention to the two-dimensional 
problem in which axial variations are suppressed. Lubrication analysis of this 
problem yields the maximum load carried by a cylinder rotating a t  a given speed or 
the minimum speed a t  which a given load can be maintained. The critical load 
condition cannot be obtained by the method of domain perturbations used by 
Ruschak & Scriven (1976). Presumably the load condition could be simulated 
numerically, but there is no hint of the critical phenomena evident in the finite 
element results displayed by Orr & Scriven (1978). On the other hand, the lubrication 
analysis is less general than the domain perturbation study because it is restricted to 
a low-Reynolds-number approximation in which the position of the maximum and 
minimum thickness is confined to the horizontal plane through the axis of the 
cylinder. 

Nearly all the aforementioned authors allude to three-dimensional effects in which 
there are large, even dramatic, variations of the interface shape along the axis of the 
cylinder. Large axial variations are also seen in coating and rimming flows of two 
liquids and one liquid and air when gravity is negligible. Photographs of large axial 
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variations in coating flows can be found in this paper and in the papers by Yih (1960), 
Moffat (1977), Kovac & Balmer (1980) and Joseph & Preziosi (1987). Large axial 
variations in rimming flows are shown in photographs in this paper, in the papers of 
Balmer (1970), Karweit & Corrsin (1975) and in the paper of Sanders et al. (1981). 

Joseph et al. (1985) and Joseph & Preziosi (1987) have studied the stability of two 
fluids between cylinders which rotate steadily with the same angular velocity. They 
find that rigid motion of the two fluids is always unconditionally stable and the 
interface between the two fluids minimizes an interfacial potential in which energies 
associated with surface tension and centripetal acceleration compete. The interfacial 
potential depends on a parameter 

ApQ2d3 J = -  
T ’  

where d is a mean radius with respect to volume, T is the surface tension and the 
density difference Ap > 0 when heavy fluid is outside (rimming flow) and Ap < 0 
when heavy fluid is inside (coating flow). If J > 4, and only if J > 4 ,  then the 
interface has a constant radius; if J < 4 there are large axial variations and the 
interface will always touch the cylinder either a t  a contact line, or with a tangent 
contact a t  the wetted rod, as in figure 4. 

It follows that interfaces with J < 4 are never of constant radius even though both 
fluids rotate rigidly. When J > 4 the interface will have a constant radius provided 
that the bubble of light fluid on the inside is restrained from elongating by endwalls 
(see figure 4 of Joseph & Preziosi 1987). 

We are going to show that the large axial variations which appear in coating and 
rimming flows when gravity is not negligible are essentially controlled by the 
aforementioned competition between surface tension and centripetal acceleration, 
with only weak second-order effects of gravity. The importance of this competition 
was mentioned in the penultimate paragraph of the paper by Moffatt (1977). Some 
aspects of the underlying stability problem can be found in Hynes (1979). 

2. Controlling parameters for coating and rimming flow 
To study coating and rimming flows when gravity is not negligible, we decompose 

the velocity V into a rigid motion e,Qr plus a perturbation u, which need not be 
small : 

The components of u are (u, v, w) in cylindrical coordinates r ,  8, x and 

V = e,Qr+u. (2.1) 

u = O  o n r = a .  (2 .2)  

On the free surface F = r-R(8, x) = 0, the normal component of the velocity must 
vanish, 

where n = VF/IVFI, the shear stress must vanish and the normal stress is balanced 
by surface tension. Thus 

V - n  = e , .nQr+u-n = 0, (2 .3)  

- p n + 2 p D [ u ] . n  = p$(QzRz) n+2HTn,  (2.4)  

where D[u]  is the symmetric part of Vu, p is the pressure associated with u,  2H is the 
sum of the principal curvatures on r = R and T is the surface tension coefficient. 

The approximations which we will implement to study coating and rimming flow 
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decompose into an interfacial problem for axisymmetric shapes generated by rigid 
motion with u = 0 and an azimuthal lubrication problem with u = e,v(r, 8, x) where 
derivatives with respect to 8 and x are assumed to be small relative to r derivatives 
and n.eg < 1 .  The equations (2.2), (2.3) and (2.4) and the equations of motion are 
satisfied identically with u = 0 by the axisymmetric solutions given by Joseph & 
Preziosi (1987). For u = e,v(r, 8, x) we satisfy (2.2) identically by requiring that 

v(a,  8, x) = 0, (2.5) 

(2.3) is satisfied approximately when rise, < 1 and this is enough also to guaran- 
tee that n.D[e,v]-n < 1 .  The tangential component of (2.4) will then vanish 
approximately if 

on r = R. 
The equation of motion for v, without approximation, is 

The deviation v from rigid motion is forced by gravity. If the maximum thickness 
Do = IR,-al of the liquid coating the rotating cylinder is small relative to the 
cylinder radius a, we may neglect secondary motions and 8 and x derivatives. This 
leads to 

which is to be solved relative to (2.5) and (2.6). The solution of this problem can be 
obtained as a perturbation in powers of h, = D,/a of the solution of the lubrication 
problem 

I a% g 
- cos8, 

ar2 v 
v = O  a t r = 0 ,  

- = 0  a t r = R .  
av 
ar 

Equations (2.9) show that at leading order v scales with gDt/v. Noting next that 
av/aO scales with v we may use the continuity equation to show that when h, = Do/a 
is small we may scale u and w with h,gDi/v. 

To find the domain of parameters in which (2.9) may be an approximation of the 
true v, change the variables in (2.7) as follows: 

a + Do y coating flow, 
rimming flow, r = {a  - Do 

z = aZ, 

(2.10) 

and 90:  - ( v ,  U ,  W )  = ~ ( v ,  h,G, h, 8). 
V 

(2.11) 
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The equation governing B is obtained by inserting (2.10) and (2.11) into (2.7). 
Thus 

where 
D 
a 

m = 1+h0y,  h, =A,\ 

(2.12) 

(2.13) 

and the upper sign is for coating flow. The Reynolds number R, measures the 
importance of nonlinear terms while R, multiplies linear terms which were retained 
in the perturbation analysis of Ruschak & Scriven (1976). The effect of increasing 
R, is to shift the position of the maximum thickness into the first quadrant. 

Boundary conditions for B are 

u = O  a t g = 0 ,  

and 

If we let ho+O and put the two Reynolds numbers R, and R, to zero we get 

I u(0) = 0,  (2.14) 

Equations (2.14) are rescaled versions of (2.9). 

J = -  
T ’  

introduced at  (1 .1)  can be regarded as the ratio of pressure forces induced by the 
angular momentum of the rigid rotation to the hoop stress T / d  associated with 
surface tension. This parameter does not enter in (2.14), but it controls the variation 
of the shape of the free surface with x. 

We have thus identified four independent parameters for rimming and coating 

The parameter 
pS22d3 

flows 
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3. The run-off condition 
The v(r)  satisfying (2.9) is in the form 

9 v = - [&'- Dy] cos 8,  
V 

where y = r-a,  D = R - a  (coating flow) 

or y = a-r ,  D = a - R  (rimming flow). 

The total azimuthal velocity is V = Qr + v or 

v = Qa*Qy+v. (3 .2)  

The term Szy is small relative to Qa since 0 < y < D and h = D / a  is small. Then, to 
within terms of order h, we have 

(3 .3)  

(3 .4)  

V = S z ~ + - [ s - D y ]  9 C O S ~ .  

v = ~a - -+DZ cos e, 
V 

9 The surface velocity 
V 

is minimum a t  0 = 0 where D = Do. 

a constant where 
The shape of the free surface follows from the statement that the volume flux Q is 

This equation determines allowed values of 

D(0)  > 0 ,  D(0)  = Do, 

provided i t  can be solved. To apply the implicit function theorem we define the 
function 

0 < 6' d 7 ~ ,  

H(D, D o , @  = Q a ( D - B , ) - l ( D 3  3v COSB-D,~).  (3 .6)  

The equation H = 0 may be solved for D,  uniformly in 8, provided that 

that is, whenever 

9D2 - = f iU--  case > 0, 
i3H 
i3D V 

(3.7) 

where h, = D,/a.  It is well known (Van Rossum 1958, figure 10) and easy to show 
that there are two positive solutions of (3.6) when (3.8) holds; the one with the 
smaller D agrees with experiments. The criterion (3 .8) ,  expressed differently, is given 
by (16) in Moffatt (1977). 

When the equality h i s  = 1 is satisfied, i3H/i3D = 0 a t  D = Do. There is no steady 
single-valued solution of (2.9) with 

(3 .9)  

The criterion (3.9) is the same for coating and rimming flows. This criterion cannot 
be expected to hold when the conditions for the validity of lubrication theory are 



Run-off condition for coating and rimming flows 105 

FIGURE 1. Interface between liquid and air in coating flow as given by (3.10) for S = 0.6 and 
different values of h, = 0.5, 0.75, 1.0 and 1.29. In  this figure gravity points downward and the 
maximum and minimum thickness is a t  I9 = 0 and x, respectively, where 6' is measured 
counterclockwise from the horizontal. We draw attention to the fact that thin films (say, h, < 0.5) 
are essentially axisymmetric. 

FIGURE 2. Interface between liquid and air in rimming flow as given by (3.10) for S = 2 and 
different values of h, = 0.2, 0.4, 0.55 and 0.707. Gravity is vertical and I9 > 0 is counterclockwise 
from the horizontal, as in figure 1 .  

violated, say, for large values of h, = D,/a. The lubrication theory seems to work 
well beyond its expected range of validity, see figures 3, 4 and 7. In  the case of 
rimming flow the criterion (3.9) makes no sense when the gap Do is larger than the 
radius a of the cylinder. Hence we cannot find a critical run-off condition, correct or 
incorrect, for values of S < 1. 
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Amico 
Amoco gear 

Silicone oils Soybean oil lubricant 
Fluid oil SAE 30 140 STP 

0.2 10.3 125 1000 0.46 2.83 16.3 143 
P (g/cm3) 0.949 0.967 0.975 0.977 0.922 0.924 0.92 

T r Z )  20.6 21.2 21.5 21.5 27 27 28 30 

0.858 
P (PI 

TABLE 1 .  Material parameters of test liquid (viscosity p,  density p ,  surface tension 2') 

In figure 1 we have plotted the smaller of the two solutions of (3.6) h(8) = D(8)/a 
in coating flows for AS = 0.6 and different values of h, = D,/a using (3.5) in 
dimensionless variables 

h - S4h3 cos 8 = h, - Sih;. (3.10) 

The graph of h(8) for the limiting value h, = ( l / X ) f  = $ has a corner. In figure 2 we 
have plotted h(8) for rimming flows for S = 2 and different values of h,. 

At the next order, the critical condition may be expressed as 

hiS = lT ;h ,+O(h i ) ,  

where the minus sign is for rimming flow (Preziosi 1986). 

4. Coating flows 
We did some experiments with oil layers coated on different rods rotating in air. 

The material parameters of the test liquids are listed in table 1. The experiments are 
like those described in $ 5  of the paper by Joseph & Preziosi (1987). The apparatus 
used in our experiments was nearly identical to the one used in the experiments of 
Moffatt (1977). A layer of liquid was first coated on the cylinder by rotating it while 
partially immersed in a trough ; the roller was then raised from the trough while still 
rotating. The coating films achieved in this way could be maintained indefinitely. 
Once the rod is coated with oil, it stays coated ; dry patches do not develop. Uniform 
coats are unstable. In the absence of important effects of gravity, undulating 
axisymmetric figures which touch the wetted cylinder with a tangent contact are 
observed (see figure 4). We are going to show that the major effects of gravity are 
confined to motions in the azimuth, the axial variations continue to be controlled 
essentially by the balance of forces competing in the minimization of the interfacial 
potential. 

4.1. Experimental veri$cation of the run-ofl condition for coating flow 
We first establish a steady state with coated rods in which secondary motions driven 
by gravity need not be negligible. The maximum thickness of the coat in azimuthal 
planes varies more or less periodically along the cylinder as in figure 4. We then 
reduce the speed to the critical value where the liquid falls off the coat a t  the points 
of maximum thickness. The speed 52 and the maximum thickness ratio h, = D,/a is 
recorded a t  the critical condition a t  which run-off points of maximum bulge are 
observed. The comparison is exhibited in figure 3. The solid line is a graph of the 
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FIGURE 3. Comparison of the critical criterion (3.9) for run-off in coating flow with experiments. 

The solid line Shi = 1 is theoretical: 0 ,  silicone 1000 P ;  0, STP 166 P;  +, silicone 125 P. 

theoretical critical condition Shi = R,/R, = 1.  The experiments are points which lie 
near this line or in the region R, > R, where nonlinear effects have become 
noticeable. The largest value of R, = R, on the Shi = 1 is 2.6 x Some values of 
R, a t  experimental points furthest in the nonlinear region R, > R, are 0.034, 0.014 
and 0.0019 for silicone oil 12500, STP and silicone 100000 respectively. We already 
noted, under (2.13), that the linear theory of Ruschak & Scriven predicts the rotation 
of the point of maximum thickness into the first quadrant with increasing R,. We 
observed small changes, less than ten degrees, in this direction. 

4.2. Shape computation based on the decomposition into rigid motion plus a 
lubrication approximation 

In figure 4 we exhibit results which show that the decomposition v = e,(Qr + v) ,  with 
v determined by lubrication theory, gives rise to theoretical predictions of shapes 
which agree with experiments even when gravity is not negligible. The theoretical 
prediction is given by the dots. It is necessary to explain how the theory is computed. 
We first assume that formula (3.10), giving the shape of the free surface in a plane 
perpendicular to the axis of the rod, is valid a t  each x along the rod, with h( & in, x )  
determined by minimizing the interfacial potential for rigid motions with negligible 
gravity, using the theory of Joseph & Preziosi (1987). To use this latter theory it is 
necessary to give the value of the parameter J = pQ2d3/T where d is the mean radius 
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FIGURE 4. (a)  Coating flow of 1000 p silicone oil on a rotating rod, a = 0.718 cm, D = 3.35 rad/s; 
front view, 8 = kin. There is very little bulging evident. The cross-section is as if the entire figure 
were axisymmetric. The dots are computed by minimizing the interfacial potential as if the figure 
were axisymmetric. ( b )  Coating flow of 1000 p silicone oil on a rotating rod, a = 0.716 cm, D = 3.35 
rad/s. Top view. The out-of-roundness associated with secondary motion due to gravity is evident. 
The fluid accumulates at  0 = 0 where the action of gravity opposes rotation. The flow is perfectly 
steady in laboratory coordinates. The dots are computed from lubrication theory and are not in 
perfect agreement. 

with respect to volume. Since the density p and surface tension T of the liquid are 
known and Q is given, we need to determine d .  We do this by identifying the volume 
of one drop which is the volume of liquid inside two rings where the free surface 
makes a tangent contact with the wetted rod, as in figure 4. The two drops shown in 
figure 4 have different d and the computation must be carried out for each drop 
separately. With d given, we compute an axisymmetric figure r = R(x )  by minimizing 
the interfacial potential subject to the constraint that R ( a )  = 0. This gives the 
profiles shown as dots in figure 4 ( a )  (front view). Now we write r = R ( 6 , x )  for the 
shape and identify the shape in figure 4 (a )  as the one in the plane 6' = +in, which is 
tthe cross-section in the plane of gravity and axis of rotation. This gives a function, 
R($,x) or h(+n,x) which, when substituted in (3.10) 

h($, x )  = h,-X$h3,, 

determines h,. The shape formula then is 

h(0, X )  -$S'h3(6', Z) cos 6' = h(+n, X )  

and the dots in figure 4 ( b )  are computed from this formula. 
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5. Rimming flow 
Rimming flow is a coating flow inside a rotating cylinder. The apparatus used in 

our experiments on rimming flows was a cylindrical Plexiglas container with inner 
radius 1.27 cm, closed a t  the ends, with an end-to-end distance of 15.24 em. 

5.1. A x i a l  structures, bubbles and disking 
If Q is large, the effects of gravity are relatively small, leaving a uniform layer of 
radius D rimming the cylinder, rotating with it as a rigid body. Gravity can be 
considered a small perturbation of rigid rotation when Sh: = gDi/av52 is small (thin 
films of viscous liquids) or when the effects of ‘centrifugal gravity’ overwhelm 
terrestrial gravity Q2D,/2g 9 1.  The shape of free surfaces in such perturbed 
problems is naturally close to shapes which arise in the unperturbed motion. In  rigid 
motions a uniform layer can occur only if J = pQ2D3/T > 4. If J < 4, rigid motion 
must take form as rotating bubbles of air in liquid, perturbed by gravity. The length 
of the bubbles decreases with J .  I n  figure 5 we have exhibited photographs of air 
bubbles in STP for (a )  J = 3.1, ( b )  J = 2.0 and ( c )  J = 0.8 where D is the mean bubble 
radius. We compute = D when 52 is so large that the STP is centrifuged into a 
uniform layer inside the rotating cylinder. These STP bubbles appear to be 
axisymmetric to the naked eye (X is small because v = 166 P is large) so that large 
effects of gravity are not noticeable. In  figure 6 we have exhibited top and side views 
of air bubbles in soybean oil (brand name, Crisco). The effects of gravity are not 
negligible. The bubbles are displaced towards the side of the cylinder where the 
motion due to gravity and rotation add. The slower moving liquid on the other side 
where gravity opposes rotation leads to a much larger accumulation of liquid, as in 
the coating flow shown in figure 4 (b ) .  When the angular velocity of the fluid is small, 
most of the liquid lies in a pool a t  the bottom of the cylinder, and the coating layer 
is very thin. The minimum thickness of the layer increases with 52 and the pool a t  the 
bottom is rotated a little towards the ascending side of the cylinder, If J < 4 and the 
minimum thickness is large enough, axial structures will develop at  the value of 8 on 
the descending side of the cylinder where the thickness is minimum (see figure 6 a )  
and if there is enough fluid there, bubbles will form. I n  this case we may see bubbles 
under conditions in which all the fluid in the pool has not run up onto the cylinder. 
At higher values of 52 the run-up condition will be satisfied and the motion will be 
much closer to rigid rotation. There is evidently then an effective J such that there 
will be bubbles if J < 4 and no bubbles if J > 4 (see figure 7). 

The form of the bubbles of air in soybean oil shown in figure 6 resembles the 
photograph of disking shown in figure 2 of Karweit & Corrsin (1975). They use the 
word disking to refer to the disk-like structures which separate bubbles of air. They 
observed these disks in cylinders from 5 % to nearly full of liquid. They do not specify 
the fluids used, nor do they give any data on angular velocity or layer thickness. The 
explanation of the formation of these disks or bubbles is based on liquid falling from 
overhead and ‘draping ’ complete liquid curtains across the cross-section of the 
cylinder. First they observed periodic axial structures on the bottom of the cylinder. 
They said that the period of the ribs depended on 52, a ,  p,  T and volume. Apart from 
a these are the parameters of J. ‘The wavelength of the disking, on the other hand, 
is a t  most weakly dependent on 52, and perhaps p and T. That these two phenomena 
be hydrodynamically connected is uncertain, although a relation is suggested by the 
fact that their lengthscales are nearly equal.’ This last remark about equal 
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(4 
FIGURE 5.  (a) Long bubble of air in STP: h = 0.55, f2 = 28.3 rad/s, J = 3.1. ( b )  The long bubble 
breaks into three as 52 is reduced : h = 0.55, f2 = 20.9 rad/s, J = 2.0. ( c )  The bubbles tend to assume 
a nearly spherical shape as the speed is reduced further : h = 0.55, f2 = 14.1 rad/s, J = 0.8. 

lengthscales suggests that disking is actually a description of the formation of air 
bubbles associated in some way with minimizing an interfacial potential, with some 
effective J ,  governing the competition between surface tension and inertia. 

‘Disking ’ in STP was also observed by Sanders et al. (1981). It is probable that the 
motions in these experiments are much closer to rigid ones than in the experiments 
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(4 
FIGURE 6. Air bubbles in soybean oil. The layer of oil is thicker on the side of the cylinder rising 

against gravity. 8 = 600 r.p.m., h, = 0.38. (a )  Top view. ( b )  Front view. 

of Karweit & Corrsin because STP is very viscous. Sanders et al. show disking for two 
values of 52 = 0.17 rev/s in their figure 11 and for 52 = 0.33 rev/s in figure 12. It is 
hard to estimate the mean bubble radius D from their photographs but it is not 
greatly in error to take D = a ,  the cylinder inner radius, from which one may 
compute J = 1.09 for the short cells shown in their figure 11 ( f )  and J = 4.01 for 
the long cells shown in their figures 12(e) and ( f ) .  This data is consistent with the 
thought that the disking actually describes the formation of bubbles of air in the 
competition between interfacial tension and centripetal acceleration. 

5.2. Run-off and run-on 
Since any fluid which runs off the inside wall of a rotating cylinder must collect a t  
the bottom of the cylinder it is convenient to do the run-off experiment in reverse. 
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FIGURE 7. Comparison of the critical criterion (3.9) for run-off in rimming flow with experiments. 
The broken lines represent the line J = 4 for Soybean oil (...) and Silicone 1000 (---). The solid line 
Shi = 1 is theoretical: +. 8TP; a, Amoco oil, SAE 30; x , Silicone oil, 12500 cp; 0, Amoco gear 
lubricant 140; 0, Silicone oil, 1000 cp; 0 ,  Soybean oil; 0 ,  Silicone oil 20 cp. 

We get all the liquid which is a t  the bottom when Q is small to run on the wall when 
52 is increased to the critical value. There is one and the same critical value for run- 
off and run-on. The sequence of events in a run-on experiment may be described as 
follows. The cylinder is partially filled with liquid, usually a small amount. When Q 
is small most of the liquid is a t  the bottom, but a thin layer coats the rotating wall. 
More fluid is captured by this layer as 0 is increased but there is a pool below, well- 
defined by an abrupt variation in the thickness of the layer, resembling a hydraulic 
jump. The pool of liquid is not drawn on the wall in a continuous manner. Instead, 
there is a critical condition, here passed at a critical 0, for run-on. Our observations 
of run-on differ slightly from the observations of rimming by Karweit & Corrsin 
(1975) who do not mention a critical run-on condition. The events leading to  run-on 
could not be described by a lubrication theory, but in the post-critical regime all the 
fluid is in a thin layer, of variable thickness, which is nearly in rigid motion. In  this 
situation lubrication theory could apply for all conditions in which X is less than the 
critical value for run-off. 

The experimental results are displayed in figure 7. The experiments are shown as 
points a t  which run-on occurs. We find a critical 52 and h = D / a  is a true-layer 
thickness in the high-speed case in which all the liquid is centrifuged onto a layer of 
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uniform thickness. To compare with theory we need h, = Do/a. We take the average 
of the h(h,, 8) satisfying (3.10) 

h(h,) = & J;h(h,, 8) dB, 

and equate it with h from experiments. We may also compute the area between 
r = a and r = R(8) from (3.10) and equate with areas of the annular ring of thickness 
h. These two averages give nearly identical values of h,. The maximum values of 
h,, over x, are used in the experiment. The agreement is such as to leave no doubt 
that the lubrication approximations are essentially correct in a domain of parameters 
in which h, is not too large (or perhaps, too small) and in which the nonlinear terms 
measured by Reynolds number R, are sufficiently small. 

This work was supported by the National Science Foundation, Fluid Mechanics, 
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